
HAL Id: hal-01265934
http://hal.grenoble-em.com/hal-01265934

Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Delaying the introduction of emissions trading
systems-Implications for power plant investment and

operation from a multi-stage decision model
Jian-Lei Mo, Joachim Schleich, Lei Zhu, Ying Fan

To cite this version:
Jian-Lei Mo, Joachim Schleich, Lei Zhu, Ying Fan. Delaying the introduction of emissions trading
systems-Implications for power plant investment and operation from a multi-stage decision model.
Energy Economics, 2015, 52, pp.255-264. �10.1016/j.eneco.2015.11.009�. �hal-01265934�

http://hal.grenoble-em.com/hal-01265934
https://hal.archives-ouvertes.fr


1 

 

Delaying the introduction of emissions trading systems – Implications for power 
plant investment and operation from a multi-stage decision model  

 

Jian-Lei Moa, Joachim Schleichb,c,d, Lei Zhua, Ying Fana, * 

a Center for Energy and Environmental Policy Research, Institute of Policy and Management, 

Chinese Academy of Sciences, Beijing 100190, China 
b Fraunhofer Institute for Systems and Innovation Research, Karlsruhe 76139, Germany 

c Grenoble Ecole de Management, 12, rue Pierre Sémard - BP 127 - 38003 Grenoble, France 
d Virginia Polytechnic Institute & State University, 24061 Blacksburg, Virginia, USA 

* Corresponding author: Ying Fan, E-mail: yfan@casipm.ac.cn, ying_fan@263.net 

Abstract 

Relying on real options theory, we employ a multistage decision model to analyze the effect of 

delaying the introduction of emission trading systems (ETS) on power plant investments in carbon 

capture and storage (CCS) retrofits, on plant operation, and on carbon dioxide (CO2) abatement. 

Unlike previous studies, we assume that the investment decision is made before the ETS is in 

place, and we allow CCS operating flexibility for new power plant investments. Thus, the plant 

may be run in CCS-off mode if carbon prices are low. We employ Monte Carlo simulation 

methods to account for uncertainties in the prices of CO2 certificates, other inputs, and output 

prices, relying on a realistic parameterization for a supercritical pulverized coal plant in China. We 

find that CCS operating flexibility lowers the critical carbon price needed to support CCS 

investment because it renders CCS investment less irreversible. For a low carbon price path, 

operating flexibility also implies that delaying the introduction of an ETS hardly affects plant CO2 

abatement since the plant operator is better off purchasing emission certificates rather than 

operating the plant in CCS mode. Interestingly, for low carbon prices we find a U-shaped relation 

between the length of the delay and the economic value of the plant. Thus, delaying the 

introduction of an ETS may make investors worse off.  

Key words: power plant investment; regulatory uncertainty; multistage decision, operating 

flexibility; real options theory; emissions trading; CCS; China 
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1. Introduction  

Following the introduction of the EU Emissions Trading System (ETS) in 2005, many emerging 

and developed countries are planning to introduce similar ETS in the future (IEA, 2010; The 

World Bank, 2014). However, several of these countries are hesitant with regard to whether and 

when they will implement such a system. Among others, their future climate targets are unknown, 

due in part to the slow progress of the United Nations’ climate negotiations. In addition, countries 

are considering alternative domestic policies, because implementing an ETS is a highly complex 

process, requiring new institutions that challenge existing regulatory and organizational practices. 

For example, China, the world’s largest emitter of greenhouse gases, has undertaken substantial 

efforts to mitigate carbon dioxide (CO2) emissions (National Development and Reform 

Commission [NDRC], 2012) and is considering implementing a national ETS in the future, 

depending on, among other things, the success of seven local pilot carbon markets, which are 

being built during the Twelfth Five-Year Plan (2011–2015) (People’s Republic of China [PRC], 

2011; see also NDRC, 2011). Because the outcome of these pilot markets is not yet known and 

because China, like many other countries, prefers to take on more ambitious greenhouse gas 

targets under the United Nations Framework Convention later rather than sooner, the future of a 

national ETS in China is highly uncertain (Jotzo, 2013; Wang, 2012).  

This regulatory uncertainty affects investment decisions in the electricity sector, in particular. The 

electricity sector contributes more than 41% of the total energy-related CO2 emission of the world, 

and 50.1% for China (IEA, 2013a). As such, power plants are included in all foreseeable ETS. 

Carbon capture and storage (CCS) technology is critical for realizing large-scale reductions in CO2 

emissions in the power sector and thus for meeting ambitious emission targets (IEA, 2007b; 

2013b). According to the IEA (2015), CCS contributes 13% of the cumulative emission reduction 

required to meet the 2°C target compared to the business-as-usual 6°C scenario. The mitigation 

cost without CCS would increase by 138%. Yet adding CCS to any process increases the capital 

costs required to capture, compress, transport, and store CO2. Operating costs also increase, 

particularly because CCS implies a loss in production efficiency. Finally, CCS technology suffers 

from a lack of social acceptance and regulatory framework (e.g., for sequestration) in many 

countries. Thus, investors in CCS currently face substantial market, policy, and technology 

uncertainties (e.g., Hirschhausen et al. 2012, IEA 2007a). Because of the high capital expenditure 

and the irreversibility of the CCS investment, potential plant investors may prefer delaying CCS 

investments (Abadie and Chamorro, 2008). Likewise, because of higher operating costs, plant 

operators may prefer to suspend CCS operations even after the plant has been retrofitted with CCS 

technology (Davison 2007; Mo and Zhu, 2014). Compared with a regulation involving technology 

standards or a carbon tax, an ETS introduces additional uncertainty, because the price of CO2 

certificates is determined by the market and is not known with certainty in advance. 

In this paper, we model investments in new power plants and operating the plant as a long-term, 

multistage decision problem, in which the decision at each stage may be affected by the decision 

in the preceding stage (e.g., Markusson and Haszeldine, 2010). In the first stage, before a 

regulation (in our case, implementation of an ETS) is introduced, the investor (e.g., utility) invests 

in a new power plant; in the second stage, after the regulation becomes known, the utility decides 
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whether to retrofit the plant with CCS; in the third stage, once input and output prices are known, 

the utility decides whether to operate the CCS unit or to suspend operating CCS temporarily. At 

each stage, the utility may also decide to close the plant for good. 

Few scholars have evaluated the effect of climate policy uncertainty on investments in 

fossil-fuelled power plants. Blyth et al. (2007) demonstrate that uncertainty about future climate 

policy creates a risk premium which increases the carbon price required to stimulate investment in 

CCS. Employing a real options approach, Yang et al. (2008) find that climate policy risk can 

become significant if there is a short time between a future climate policy event and the time when 

the investment decision is made. By implementing credible long-term climate change policy, the 

government can reduce this risk. Abadie and Chamorro (2008), among others, point out that 

installing a CCS unit in a coal-fired power plant operating in a carbon-constrained environment is 

not profitable under current climate policy. Walsh et al. (2014) use an analytic real options model 

with time-dependent investment costs to investigate the timing of CCS investment. Their findings 

suggest that higher carbon price volatility increases the critical carbon price, i.e. the price of 

carbon above which investment must be made immediately rather than keeping the option to 

invest open. Zhang and Wei (2011) present a real options-based carbon capture investment model 

to investigate the timing of investments while allowing for uncertainty in carbon prices and in the 

CCS technology. They find that the prospects of technological improvements in CCS will delay 

investment. Also relying on a real options-based model, Zhu and Fan (2011) conclude that the 

current investment risk of CCS is high and that climate policy uncertainty has a greater effect on 

CCS development in China than uncertainty related to investment or fuel input costs. Zhang et al. 

(2014) employ a trinomial tree model based on real options theory to calculate critical carbon 

prices for investment in CCS retrofit in China. Fleten and Näsäkkälä (2010) analyze investments 

in gas-fired power plants, considering the significant uncertainty in future market prices for fuel 

and CO2, as well as in future investment and operating flexibility. Allowing for stochastic prices of 

electricity and natural gas, they show that operating flexibility may significantly affect the 

decision to invest in a new plant. Models allowing for operating flexibility also reflect real-world 

CCS plant operation more adequately (e.g., Chalmers et al. 2009). Mo and Zhu (2014) develop a 

model for investment in CCS retrofits of existing plants in which carbon capturing can be 

switched off to analyze the impact of a carbon price-floor policy on CCS investment and CO2 

abatement. Based on a multi-factor real options model Rohlfs and Madlener (2011) find that low 

carbon prices in particular render investment in carbon-capture-ready (CCR) plants less attractive 

than investment in a conventional plant with a later retrofit. Finally, Xun et al. (2014) rely on a 

real options model with multiple uncertainties to derive the optimal technology choice among the 

competing generation technologies CCS, combined cycle gas turbine (CCGT), wind power and 

nuclear under different market conditions. 

Using China as an exemplary case study, we simulate how the timing of introducing CO2 emission 

regulation affects the economic value of the investment, as well as an investor’s decision to 

retrofit CCS and to operate CCS. In particular, we explore whether delayed regulation makes 

investors better or worse off. Although our methodology relies on real options theory, allowing for 

stochastic (and correlated) prices of electricity, coal, and CO2 certificates, our approach differs 

from the extant literature in two important respects. First, we assume that the power plant 

investment occurs before the regulation is in place, which is a realistic scenario for many projects. 
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Second, in addition to allowing for flexibility in the timing of the CCS investment and the option 

to close the plant permanently, our model allows for CCS operating flexibility.1 These features 

add complexity but allow for some novel insights. First, we find that CCS operating flexibility 

lowers the critical carbon price and is thus conducive to investing in CCS power plants. Second, 

delaying the introduction of the ETS hardly affects CO2 abatement if the carbon price is low. Third, 

we find a U-shaped relation between the economic value of the new plant and the length of the 

delay of ETS. Thus, a delay in the ETS may actually make investors worse off, which is 

counterintuitive at first. 

We organize the remainder of this article as follows: In Section 2, we develop a generic 

real-options-theory–based model, governing power plant investment and operating decisions 

under multiple uncertainties. In Section 3, we present the key assumptions for power plant 

investments in China, which enter our simulations. In Section 4, we present and discuss the 

simulation results, and in Section 5, we offer some concluding remarks. 

2. Modeling power plant investment under uncertainty 

In our model, the utility is assumed to make decisions about its investment in and operation of the 

plant in each period to maximize the economic value of the project, while under uncertainty. The 

plant lifetime can be divided into three stages, as shown in Figure 1. Timing flexibilities on 

decommissioning the plant in advance and retrofitting the plant with CCS2, as well as CCS 

operating flexibility were incorporated. In Stage 1, at the beginning of the plant lifetime in period 

T0, the utility invests in a new power plant. Construction of the plant is assumed to take two years 

until completion in T1. A CO2 emission regulation (i.e., ETS) will be introduced in T2. Between T1 

and T2, the utility may decide to decommission the plant in advance if it anticipates that ongoing 

operations of the plant will lead to a negative cash flow in the future. In Stage 2, from T2 + 1 

onward, the plant operator first decides whether to decommission the power plant. If the plant is 

not decommissioned, the utility decides whether to retrofit the plant with CCS immediately or 

delay the retrofit until some time Tr
3 (T2 ← Tr ← T). In Stage 3, after the CCS retrofit is 

implemented (i.e., from Tr + 1 to T), at the beginning of each period, the utility decides whether to 

decommission the plant. If the plant is not decommissioned, it decides whether to operate the plant 

in CCS mode or in non-CCS mode. Next, we present the formal decision problem backward, 

starting with the final stage. 

                                                             
1 Apart from the timing of the investment decision, our model differs from Mo and Zhu (2014) in other important 
facets. In particular, we built a three-stage model to analyse investment in a new power plant, while Mo and Zhu 
(2014) employ a two-stage decision model to explore CCS retrofit to an existing power plant.  
2 Timing flexibility means that the utility can chose the optimal point in time to implement a decision in order to 
maximize the economic value of the investment (e.g. decommission the plant, or retrofit the plant with CCS), by 
repeating the decision on whether to implement it immediately or to delay in each period of the respective stage 
until the utility either finds the optimal point in time, or gives up the option at the end of the respective stage. The 
timing flexibility to retrofit the plant with CCS is only valid during the second stage. The timing flexibility on 
whether and when to decommission the plant exists during the entire lifetime of the plant after the plant is 
constructed. 
3 We assume the utility invests in a CCS retrofit in period Tr and that the retrofit takes one year to be completed. 
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Figure 1. The power plant’s investment and operation decision process (The decision process 

during the lifetime of a power plant is modeled in three stages, and the decision at each stage is 

affected by the electricity, fuel and carbon markets.) 
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2.1 Stage 3: From Tr + 1 to T 

From Tr + 1 onward, similar to the previous stages, the utility may first decide whether to 

decommission the plant in advance in any period, and, if not, the utility may decide whether to 

operate the plant in CCS mode or not. The utility repeats these two decisions in each period until 

the plant is decommissioned or the end of stage 3 is reached. The utility is assumed to maximize 

the net cash flow in each period. The decision problem for each period in Stage 3 then becomes: 

{ 2

2

,
 ,

SCC CC

SCC CC
t t

t t

Capature  CO if CF CF
Suspend CO Capature if CF CF≥

   <  
                                           (1) 

where CC

tCF  and SCC

tCF  are the cash flows when operating in CCS mode and non-CCS mode, 

respectively, in period t.4 The optimized cash flow is then 
                                                             
4 It is assumed that the cost of switching between the operation modes is zero. Appendix A details the calculation 
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( , )SCC CC
t t tCF MAX CF CF=                                                    (2) 

The utility closes the plant in period t if the expected net present value (NPV) of net cash flow 

from continuing to operate the plant, 3tV , is less than the NPV from decommissioning the plant, 

A
tNPV .5 

3

3

, ( )
  ,  ( )

t

t

t

t

A
t

A
t

Decommission the plant if E V NPV
Continue operating the the plant if E V NPV>

 ≤
 





 (T 1 t T)r + ≥ ≥ .                  (3) 

Here, 3
tV  can be expressed as 

33 ( , ( ))
t t

r t A
t t t t t VV CF e MAX NPV E +∆

− ∆
+∆= + ,                                        (4)   

where r is the discount rate, and t∆  is the time step. The optimized economic value in period t is 

3 3( , ( ))A
t t tF MAX NPV E V= .                                                   (5) 

Equation 5 then becomes the basis for the decision about whether to retrofit the plant with CCS in 

Stage 2. The boundary condition of 3tV  in the last period T is 

3
T TV CF= .                                                                   (6) 

The boundary condition in Equation 6 allows 3tV  and 3
tF  to be solved backward. 

2.2 Stage 2: From T2 + 1 to Tr 

Unless the utility decides to decommission the plant, it must decide whether to retrofit the plant 

with CCS immediately or to delay the retrofit. In the latter case, the utility pays for all CO2 

emissions in that period. If the utility invests in CCS in period t (from T2 + 1 to Tr), the total NPV 

is 

3
1

r CCS outlay
t t tNPV e F C− −

+= − ,                                                   (7)     

where CCS outlay
tC −  is the investment cost of a CCS retrofit in period t, and 3

1tF +  is the expected 

NPV of the future net cash flow from period (t + 1) to T, after retrofitting the power plant 

(Equation 5). If the utility delays the retrofit, the total NPV of the investment opportunity becomes 

2 2( , ( ))BR r t
t t t t t t tV CF e MAX NPV E V− ∆

+∆ +∆= + ,                                    (8) 

where BR
tCF  is the cash flow before a CCS retrofit in period t and after the government 

                                                                                                                                                                               

of net cash flow in each period, 
CC

tCF  and 
SCC

tCF . 
5 These decision rules are based on a dynamic real options approach (and not on a myopic NPV approach), and 
the timing flexibility and hysteresis effect are taken into account. Similarly, the decision rules in (9), (11), and (15) 
also employ the dynamic real options approach. For simplicity, we further assume that decommissioning the plant 
yields a net cash flow of 0. 
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introduced an ETS in T2.
6 The CCS retrofit investment in Stage 2 then is governed by the 

following decision rule for each t: 

{ 2

2 .

,
 

( ),
) ( )

t

t

t t t

t t t

Retrofit plant with CCS immediately if E NPV E
Delay the CCS retrofit,if E NPV E

V
V

   ( )
  (

>
≤ .                        (9) 

In each period, decisions are made based on the prices in that period and the carbon price 

trajectories by comparing t tE NPV( )  and 2( )ttE V . 

The optimized economic value from continuing operating the plant in period t is 

2 2( ( ), ( ))t t t t tf MAX E NPV E V= .                                               (10)     

The decision rules for whether to decommission the plant become 

2

2
,

 ,

A
t t

A
t t

Decommission the plant if f NPV
Continue operating the plant if f NPV>

            ≤
      





.                                  (11) 

Then, the optimized economic value in period t in Stage 2 is 

2 2( , )A
t t tMAXF f NPV = .                                                                        (12) 

Equation 12 allows us to derive the optimized economic value at time (2T t+ ∆ ), 2

2T t
F +∆ , which 

the utility takes into account when making a decision in Stage 1. 

At time T, the utility has no incentive to invest in a CCS retrofit, because there is no time to 

recover the investment cost. Then, the total expected NPV from delaying the CCS investment at 

time T, 2
TV , is (boundary condition) 

2 (0, )BR
T TV MAX CF= ,                                                        (13) 

where BR
TCF  is the cash flow in period T before the CCS retrofit. Equation 13 allows us to solve 

for 2
tV , 2

tf , and 2

t
F  backward. 

2.3 Stage 1: From T0 to T2 

In Stage 1, the utility first makes an investment in the power plant at T0 and finishes construction 

in period T1. Then, the utility has the option to decide whether to decommission the plant at the 

beginning of each period. In period t 1 2( )T t T≤ ≤ , continuing to operate the plant yields an NPV 

of 1
tV : 

1 1( , ( ))BETS r t A
t t t t t t tV CF e MAX NPV E V− ∆

+∆ +∆= + ,                                 (14)  

                                                             

6 Appendix A details the calculation of 
BR
jCF .  
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where BETS
tCF  is the cash flow in period t before the ETS is introduced.7 Note that in each 

period during this stage, there is no CO2 emission regulation. The decision about whether to 

decommission the plant after it has been built but before T2 when the CO2 ETS is introduced is as 

follows: 

1

1
, ( )

  , ( )

A
t t t

A
t t t

Decommission the plant if E V NPV
Continue  operating the plant if E V NPV>

   ≤
   





.                                (15)    

The optimized economic value in each period t is  

1 1( ( ), )A
t t t tF MAX E V NPV= .                                                  (16)    

From Equation 16, we can derive the optimized economic value at time T1, 
1

1
TF . The boundary 

condition in period T2 is then 

2 2 2

1 2BETS r t
T T T tV CF e F− ∆

+∆= + ,                                                    (17) 

where 
2

2
T tF +∆  is obtained from Stage 2 (Equation 12).  

In period T0, the economic value of the power plant investment is 
0TS 8: 

1 0

0 0 1

( ) 1r T T
T T TS C e F− −= − + ,                                                     (19) 

where 
0TC  is the investment cost of the plant, and 

1

1
TF  can be obtained from Equation 16. 

3. Description of the case study 

For the case study simulations, we chose a supercritical pulverized coal (SCPC) plant investment, 

which is a promising technology option for China’s electricity sector (Chen and Xu, 2010; Deng, 

2008; Huang, 2008). The relevant technical parameters of the plant appear in Table 1. 

Investors in power plants face uncertain future costs and revenues. In particular, electricity prices, 

coal prices, and CO2 certificate prices are assumed to follow stochastic processes. Like Davis and 

Owens (2003), Siddiqui et al. (2007), and Kumbaroğlu et al. (2008), we model coal prices as a 

geometric Brownian motion (GBM).9 In a liberalized electricity market, the electricity price is 

characterized by mean reversion, seasonality, and stochastic volatility (Schwartz and Smith, 2000). 

Thus, the long-term development of electricity prices in a mature electricity market may be 

described best with a mean-reverting stochastic process. However, because the model eventually 

                                                             

7 Appendix A details the calculation of net cash flow in each period, 
BETS

kCF . 
8 Economic value here means the expanded NPV which is the sum of the traditional NPV and the value of 
management flexibility (Dixit and Pindyck, 1994). 
9 According to Pindyck (1999), who analyzes the long-term evolution of energy prices such as oil, coal, and 
natural gas, using a GBM model is unlikely to lead to large errors in optimal investment rules, even though 
long-term energy prices may be mean-reverting. 
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will be applied to China, where the electricity market is still regulated, we employ GBM rather 

than a mean-reverting process to model the electricity price development.10 The CO2 certificate 

price in the Chinese ETS pilots is currently relatively low11 but is expected to increase gradually 

once allocation becomes more stringent in the middle and long term, as China takes on more 

ambitious national emissions targets. In addition, CO2 certificate price evolution is subject to 

many factors, reflecting uncertainty in both supply and demand that influences the CO2 certificate 

price (Alberola et al., 2008; Benz and Trück, 2009). We therefore follow prior literature (Abadie 

and Chamorro 2008; Fuss et al., 2008; Zhou et al., 2010; Zhu and Fan, 2011) and model the future 

CO2 certificate price evolution as a GBM process. In addition, we consider correlations across 

different price evolutions. The equations of uncertain price evolution are in Appendix B; the 

relevant economic parameters appear in Table 2. 

The current average carbon price in the seven ETS pilot schemes in China is approximately 50 

RMB/t CO2. However, the carbon price parameters cannot be obtained on the basis of historical 

price development, because carbon markets in China are still young. Following Rohlfs and 

Madlener (2011) and Abadie and Chamorro (2008), we set the drift rate of the certificate price in 

the base case at 4%. Because this parameter significantly affects the outcomes of our simulations, 

we also consider scenarios with drift rates of 1% (low case) and 7% (high case). For the 

subsequent simulations, we assume the planning horizon ranges from 2015 to 2050. We chose 

2015 as the starting year, because it is the earliest year a national ETS in China is likely to be 

implemented. 

To solve the model, we employ Monte Carlo simulation methods and the least squares methods, as 

proposed by Longstaff and Schwartz (2001). Brauneis et al. (2013) and Mo and Zhu (2014), 

among others, use a similar approach (Appendix C provides the details). 

                                                             
10 Electricity prices in China are currently low, but they are expected to increase in the wake of future market 
reforms (Fan et al., 2013; Mo et al., 2013). 
11 Until the end of October 2014, the average CO2 prices in the seven pilot schemes in China ranged from 20 to 70 
RMB/t CO2, with Shenzhen at 69.5 RMB/t CO2 (8.95 Euros/t CO2), Shanghai at 39.1 RMB/t CO2 (5.04 Euros/t 
CO2), Beijing at 49.5 RMB/t CO2 (6.38 euros/t CO2), Tianjin at 20.7 RMB/t CO2 (2.66 euros/t CO2), Chongqing at 
29.7 RMB/t CO2 (3.83 euros/t CO2), Guangdong at 54.2 RMB/t CO2 (6.99 euros/t CO2), and Hubei at 23.8 RMB/t 
CO2 (3.07 euros/t CO2). 
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Table 1. Technical parameters for power plant investment  

Parameters Unit Value 

Installed capacity MW 600 

Construction cycle  years 2 

Average capacity load % 85 

Plant lifetime  years 35 

Emission factor  t CO2/MWh 0.79 

Initial capital outlay  M RMB 3 165.8 

Additional capital outlay for CCS retrofit M RMB 1 449.9 

Initial operation and maintenance (O&M) cost  M RMB/y 165.3 

Additional O&M cost for CCS operation  M RMB/y 115.7 

Initial power supply efficiency  % 42 

Efficiency penalty with CCS  percentage points 9.5 

CO2 capture rate  % 80 

Costs for transport, storage, and monitoring RMB/t CO2 50 

Time needed for CCS retrofit year 1 

Data sources: Sekar (2005), Abadie and Chamorro (2008), Liang et al. (2009), Rohlfs and Madlener (2011), and 

Mo and Zhu (2014). 

Table 2. Economic parameters 

Parameters Unit  Value 

Initial electricity price RMB/MWh 600 

Initial coal price RMB/M Btu 27.5 

Risk-adjusted electricity price drift rate  % 3 

Risk-adjusted coal price drift rate % 3 

Electricity price volatility  % 8 

Coal price volatility % 10 

Initial carbon price  RMB/t CO2 50 

Risk-adjusted carbon price drift rate  

High case % 1 

Base case % 4 

Low case % 7 

Carbon price volatility % 25 

Correlation coefficient  

Electricity-coal – 0.6 

Electricity-carbon – 0.395 

Coal-carbon – –0.35 

Discount rate % 5 

Time step length in simulation Year 1/4 

Number of simulated paths – 10 000 

Data sources: Abadie and Chamorro (2008), Liang et al. (2009), Zhu and Fan (2011), and Rohlfs and Madlener 

(2011).  

Note: 1) We have checked the correlation coefficient matrix for positive semi-definiteness. 2) Following Zhu and 

Fan (2011), we employ a low electricity price volatility since the power market in China is still regulated by the 

government.  
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4. Simulation results 

Our presentation of the simulation results focuses on how the timing of the introduction of an ETS 

affects power plant investments and operating decisions. Of particular interest are the 

consequences for CCS retrofit, CO2 abatement, and the value of the power plant investment.  

4.1 CCS retrofit 

The multistage decision model implies that a delay in introducing an ETS also changes the CCS 

retrofit decision. Figure 2 shows the probability distribution of the time when the plant is 

retrofitted with CCS for different periods of introducing an ETS (2015, 2025, 2035, 2045) and the 

drift rate of the future carbon price is set at its base case level of 4%. The solid line is the 

cumulative probability, and the dotted line represents the marginal probability. First, the 

probability to invest in CCS before the ETS is introduced is zero, because the utility has no 

incentive to abate CO2. Second, as expected, a delay in the ETS shifts the probability distribution 

to the right (i.e., the plant will be retrofitted later). Third, there is a peak value of the marginal 

probability for when the ETS is introduced, and the marginal probability drops rapidly afterward. 

The CCS retrofit mainly occurs at an early stage after the CO2 emission regulation is introduced, 

because the power plant lifetime is limited, and there will not be enough time left to operate 

profitably in CCS mode if the plant is retrofitted too late. If the current carbon price is very low 

and the future carbon price increases rapidly, the CCS retrofit might occur later. However, our 

simulation results suggest that this probability is rather small. Finally, our simulations illustrate 

how the cumulative probability decreases with the time of introducing an ETS. For example, the 

probability would decrease by nearly 10%, from 85.7% to 77.1%, if the introduction of an ETS 

were delayed by 10 years, from 2020 to 2030.12 

 

Figure 2. The probability distribution of CCS retrofit time (Early implementation of an ETS 

promotes CCS retrofit; most CCS retrofits occur shortly after an ETS is implemented.) 
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12 This example mimics discussions at the UNFCCC level about whether China should take on emission targets in 
2020 or in 2030. 
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To explore the impact of the carbon market evolution further, we simulate the probability of a 

CCS retrofit for different carbon price drift rates. Figure 3 (left) illustrates how the probability of a 

CCS retrofit in Stage 2 would change with a higher or lower carbon price drift rate, compared with 

the base case. Because a higher carbon price drift rate means a higher carbon price and thus higher 

CO2 emission costs in the future, a CCS retrofit investment becomes more valuable. The reverse 

holds for a lower drift rate. Figure 3 (right) shows the differences in the probabilities of a CCS 

retrofit for different carbon price scenarios: The probability difference increases when an ETS is 

introduced later. If the ETS is introduced later, the effect of the future carbon price on the CCS 

retrofit decision thus is greater. 

Figure 3. The CCS retrofit decision with CCS operating flexibility (Higher carbon price drift rates 

promote CCS retrofits; the impacts of carbon prices on CCS retrofit are stronger the later the ETS 

is implemented.) 
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To further explore the impact of CCS operating flexibility on CCS retrofit decisions, we also 

derive the retrofit probabilities for a plant without CCS operating flexibility (Figure 4). Similar to 

the results with operating flexibility (Figure 3), the probability of a CCS retrofit decreases with the 

ETS being delayed and increases with higher carbon prices. Comparing the results in Figure 4 and 

Figure 3 (right) shows that the probability of a CCS retrofit is much higher with operating 

flexibility than without operating flexibility. Taking the case of a 1% carbon price drift rate as an 

example, the probability of a CCS retrofit over the period 2015 to 2050 is about 80% with 

operating flexibility when the ETS is introduced in 2015. For a CCS plant without operating 

flexibility, this probability is only about 40%. This illustrates that CCS operating flexibility 

increases the likelihood of a CCS retrofit. According to the real options theory, because of the 

irreversibility of the CCS investment, potential investors are prone to defer or even give up CCS 

investment when faced with future uncertainty (Dixit and Pindyck, 1994). However, if the carbon 

capture is flexible, and the investors can switch off CCS operation when the carbon price is too 

low, the profitability increases (Abadie and Chamorro, 2008). Since operating flexibility renders 

the investment less irreversible, investors are prone to make more investment in CCS than if there 

was no CCS operating flexibility. 
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Figure 4. The CCS retrofit decision without CCS operating flexibility (Comparing the results 

between Figure 4 and Figure 3 shows that CCS operating flexibility increases the likelihood of 

CCS retrofit.) 

0

10

20

30

40

50

60

70

2015 2020 2025 2030 2035 2040 2045 2050

P
ro

ba
bi

lit
y 

of
 C

C
S

 r
et

ro
fit

 (%
)

Time of introducing ETS

1% 4% 7%

 

Based on the results of CCS retrofit decisions, we can also calculate the threshold value for the 

initial carbon price which would render investment in CCS almost certain (e.g. with 90% 

probability). Figure 5 displays the critical carbon price for the base case drift rate of the carbon 

price given different points in time of introducing an ETS. More specifically, if the ETS is 

introduced in 2015, the critical carbon price above which the CCS retrofit probability is 90% is 

about 140 RMB/tCO2. For lower (higher) CCS investment probability levels, the critical carbon 

price would also be lower (higher). For example, if the investment probability is set to 80%, the 

critical carbon price would amount to 103 RMB/tCO2. Likewise, as can be seen in Figure 5, the 

critical carbon price would increase with the introduction of ETS being delayed, and it reaches 

350 RMB/t CO2 if the ETS is introduced in 2030. Moreover, Figure 5 also illustrates that 

operating flexibility lowers the critical carbon price. For example, the critical carbon price without 

operating flexibility would be about 215 RMB/tCO2 if ETS is introduced in 2015. This also 

contributes to explaining why the critical carbon price in our study is lower than in Zhang et al. 

(2014), who, without allowing for operating flexibility13, calculate the critical carbon price to 

range between 230 RMB/tCO2 and 350 RMB/tCO2.  

                                                             
13 Other differences may be due to differences in the methodologies and the definition of the critical carbon price. 
In Zhang et al. (2014), a trinomial tree model was employed, and the critical carbon price refers to the price above 
which immediate investment is optimal. In our study least squares Monte Carlo methods were employed, the 
critical carbon price refers to the price above which the investment would almost certainly occur (i.e. with 90% 
probability), and, especially, the CCS retrofit could occur at any point in time during the whole plant lifetime, i.e. 
between 2015 and 2050. 
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Figure 5. Critical carbon prices support CCS retrofits for the base case carbon price drift rate (4%) 

(CCS operating flexibility lowers the critical carbon prices required to support CCS retrofits.) 
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4.2 CO2 abatement 

Figure 6 shows the probability of achieving a given amount of total emission reductions for the 

different periods of introducing an ETS when the drift rate of the future carbon price is at its base 

case level. Table 3 provides the descriptive statistics. Accordingly, the distribution of the amount 

of CO2 abated is skewed to the left. Notably, the amount of abated CO2 falls between 0 and 10 

million metric tons (Mt) in more than 80% of the simulated paths. For the ETS starting years 2015, 

2020, 2025, 2030, 2035, 2040, 2045, 2050, the probabilities of zero abatement are 60.16%, 

61.54%, 63.42%, 65.58%, 69.2%, 73.44%, 87.24%, and 100%, respectively, though on some paths 

it approaches 90 Mt CO2 (i.e., the maximum abatement potential corresponding to a mandatory 

CCS technology standard implemented in T0).
14 In most cases, the total amount of abated CO2 

does not change much when the ETS is delayed because under the base case assumptions the CO2 

price is low relative to the abatement cost, and the amount of CO2 abated is relatively small. 

In our model framework, the utility may decide to postpone the CCS retrofit and also chooses 

whether to operate in CCS mode once a CCS retrofit is implemented. Both types of flexibility 

decrease the amount of CO2 abated. To explore which type of flexibility contributes more to the 

decrease in CO2 abatement, we combine the results of the CCS retrofit and CO2 abatement. For 

example, when the ETS is introduced in 2015, the CCS retrofit mainly occurs before 2025 (in 

approximately 60% of all paths) (see Figure 3). By comparison, if the utility cannot temporarily 

suspend CCS operation, the amount of CO2 abated in most simulated paths reaches approximately 

70 Mt CO2.
15 Thus, CCS operating flexibility contributes to the finding that the amount of CO2 

abated is rather small. Furthermore, these results indicate that the carbon price in the base case 

scenario is too low to support future CO2 abatement. 

As expected, the later the ETS is introduced, the lower the amount of CO2 abated. This result is 

                                                             
14 The CO2 abatement amount in each year is approximately 2.8 Mt CO2 when operating in CCS mode. If the CCS 
retrofit is implemented in T0 and CCS operation continues without being suspended, the CO2 abatement during the 
whole lifetime of the plant is approximately 89.6Mt CO2 (2.8 Mt CO2 × (35 – 3)). Note that it takes three years for 
the plant construction and the CCS retrofit. 
15 If the CCS retrofit is implemented before 2025, the time left for CCS operation is at least 25 years when there is 
no CCS operating flexibility, and the total amount of CO2 abated exceeds 25 × 2.8 = 70 Mt CO2. 
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driven by two factors. First, and most obvious, the later the ETS regulation is introduced, the 

fewer years the utility is incentivized to reduce the CO2 emissions of the plant (because the 

lifetime of the plant is fixed). Second, a delay in ETS regulation decreases investment in CCS (see 

section 4.1) and thus decreases CO2 abatement in Stage 3. 

 

Figure 6. Distribution of CO2 abatements at different times of introducing an ETS for the base 

case (The amount of CO2 abated is relatively small and does not change much when the ETS is 

delayed because the carbon prices in the base case are low relative to the CCS abatement costs.) 
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Table 3. Descriptive statistics of CO2 abatement 

Time of introducing ETS 2015 2020 2025 2030 2035 2040 2045 2050 

Mean (Mt CO2) 6.5 6.2 5.8 5.0 4.0 2.8 1.3 0.0 

SD (Mt CO2) 16.1 15.5 14.5 12.7 10.3 7.4 3.9 0.0 

 

Figure 7 displays the expected amounts of CO2 abated under different carbon price drift rates. 

Total abatement is rather sensitive to the carbon price, with higher drift rates leading to higher 

total CO2 abatement. A higher future carbon price renders CCS retrofit in Stage 2 more profitable 

and also provides a stronger financial incentive to operate the plant in CCS mode in each period 

during Stage 3. Figure 7 shows that, as expected, for all carbon price scenarios, the CO2 abatement 

amount decreases, the later the ETS is introduced. In addition, if the carbon price is low (e.g. with 

a 1% drift rate), the CO2 abatement will be small and will not change much when delaying the 

introduction of an ETS because the utility may suspend CCS operation even if the CCS is 

installed. 
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Figure 7. The expected CO2 abatement for different carbon price drift rates (Higher drift rates lead 

to higher total CO2 abatement; the impact of carbon prices on abatement is stronger the earlier the 

ETS is implemented.) 
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4.3 Economic value of the power plant investment 

The utility makes its investment decision on the basis of expected NPV. Figure 8 shows the 

distribution of NPV if the ETS is introduced for the base case in 2030. The shapes of the value 

distributions when the ETS is implemented in 2015, 2020, 2025, 2040, 2045, and 2050 are 

similar.16 Table 4 provides the key descriptive statistics, suggesting the standard deviation is 

approximately 10% of the mean. In addition, the distribution of the economic value is more 

symmetric than the distribution of the CO2 abatement.  

Figure 8. The economic value distribution if the ETS is implemented in 2030 (The distribution of 

the economic value is more symmetric than the distribution of the CO2 abatement shown in 

Figure 6.) 
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Table 4. Descriptive statistics of the economic value 

Time of introducing 

ETS 
2015 2020 2025 2030 2035 2040 2045 2050 

Mean (M RMB) 44 760.2 44 134.9 43 613.2 43 270.9 43 150.2 43 295.8 43 787.7 44 637.9 

SD (M RMB) 4 782.8 4 519.1 4 495.3 4 552.8 4 560.0 4 614.5 4 669.4 4 732.2 

                                                             
16 These figures are available on request.  
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The expected economic values under different carbon price drift rates and points in time to 

introduce an ETS appear in Figure 9. First, Figure 9 illustrates that higher drift rates lower the 

economic value of the plant no matter when the ETS is introduced. Higher carbon prices increase 

compliance costs (i.e., lower the NPV) because the utility has to spend more on purchasing CO2 

certificates or to retrofit the plant with CCS and abating CO2. Naturally, the effect of the carbon 

price becomes smaller the later the ETS is implemented. Second, Figure 9 implies that the pattern 

of the economic value for different ETS implementation times is U-shaped for lower carbon costs 

(drift rates of 1% and 4%) and monotonically increasing for higher carbon costs (drift rate of 

7%)17. 

Figure 9. The expected economic value of the investment with CCS operating flexibility (For low 

carbon prices the relation between the economic value of the new plant and the length of the delay 

of the ETS is U-shaped.) 
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Although arguably counterintuitive at first, this finding may be explained by two countervailing 

effects. First, delaying the ETS lowers the utility’s compliance costs over the lifetime of the plant, 

thus leading to a higher NPV compared with introducing an ETS in earlier years. Second, the 

value of the operating flexibility decreases when an ETS is implemented later rather than sooner, 

leading to a lower NPV. As an illustration, Figure 10 shows the NPV of a plant without CCS 

operating flexibility, while all other conditions remain the same. Thus, once the investment is 

made, the plant must run in CCS mode in each period. In this case, the later an ETS is 

implemented, the higher the NPV of the plant is for all drift rates.  

 

                                                             
17 For the 4% carbon price drift rate, the figures in Table 4 also reflect the U-shaped relation between the 
economic value of a plant and the ETS introduction year, but the effects are rather small. However, Figure 9 
suggests, that for the other drift rates, considered the timing of introducing an ETS has a substantial effect on the 
investment decision. For the 1% carbon price drift rate, the economic value first decreases from 48 662 MRMB to 
44 401 MRMB (corresponding to a decrease of about 9%) with the ETS being delayed from 2015 to 2040. In this 
case, the change in the economic value exceeds the initial investment cost (3 165.8 MRMB). Similarly, for the 7% 
carbon price drift rate, the economic value increases from 39 303 MRMB to 44 781 (corresponding to an increase 
of about 14%) with the ETS being delayed from 2015 to 2050. 
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Figure 10. The expected economic value of the investment without CCS operating flexibility (If 

there is no operating flexibility, the economic value of the investment increases monotonically 

with the length of the delay of the ETS.) 
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The value of the CCS operating flexibility may then be calculated as the difference between the 

curves shown in Figure 9 and those in Figure 10 (see Figure 11). Naturally, the economic value 

with operating flexibility is greater than that without operating flexibility in each carbon price 

scenario. In addition, the later the ETS is introduced, the smaller is the value of the operating 

flexibility. Thus, as real options theory suggests (Dixit and Pindyck, 1994), there is a positive 

correlation between the value of the operating flexibility and the length of time in which the 

operating flexibility is valid. As Figure 9 shows, for low carbon prices, this negative flexibility 

effect of delaying the introduction of the ETS on the NPV is larger than the positive compliance 

cost effect when the delay is short, and vice versa when the delay is long. For higher carbon prices, 

the compliance cost effect dominates even for a short delay of introducing an ETS. 

 

Figure 11. The value of the operating flexibility at different levels of the carbon price drift rate 

(The value of the operating flexibility decreases with the length of the delay of the ETS and with 

the carbon price drift rate.) 
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5. Conclusion 

In many countries, investors face uncertainty about whether and when an ETS will be 

implemented, yet they have to make decisions about projects before the regulation becomes 

known. Uncertainty also arises from uncertain input and output prices. Notably, because the prices 

of CO2 certificates are determined by market conditions, implementing an ETS adds uncertainty 

for investors. In this article, we rely on real options theory to analyze the effect of the timing of an 

ETS on power plant CCS retrofit decisions, plant CO2 emissions, and NPV, allowing for 

uncertainty about input and output prices. In particular, unlike most previous analyses, our 

multistage decision model accounts for CCS operating flexibility; at each stage, the utility may 

suspend operating CCS temporarily and instead purchase CO2-certificates on the market  

We first find that that operating flexibility lowers the critical carbon price for investment in a CCS 

plant. Since operating flexibility renders investment in CCS less irreversible, and the propensity to 

invest in a CCS plant would increase. Our simulation results suggest that in this case the critical 

carbon price is about 140 RMB/t CO2, which is much lower than previously found in literature 

which relies on models without operating flexibility. Thus, operating flexibility is expected to 

increase investment in CCS plants even at low certificate prices. In this sense, when the utility or – 

as is often the case in China – the government evaluate CCS investment project in practice, CCS 

operating flexibility should not be ignored, else the economic viability of CCS investment may be 

underestimated. The critical carbon price, however, increases when the introduction of the ETS is 

delayed. Likewise, our results confirm that delaying implementation of an ETS generally reduces 

a utility’s propensity to invest in a CCS retrofit and also lowers the total amount of CO2 abated. 

For example, if the implementation of an ETS is delayed from 2020 to 2030, the probability of 

investing in CCS retrofit decreases by approximately 10 percentage points. Naturally, to promote 

investment in CCS and CO2 abatement, an ETS would have to be implemented earlier rather than 

later.  

The impact of delaying the introduction of an ETS on CO2 abatement crucially depends on the 

carbon price. If the future carbon price drift rate is sufficiently high, the delay lowers CO2 

abatement significantly. For a low carbon price drift rate, however, the effect on CO2 abatement is 

small (and smaller than it would be for a CCS plant without flexibility) during the whole lifetime 

of the plant because plant operators will find it more profitable to run the plant in off-CCS mode 

and purchase CO2 certificates on the market instead.  

Arguably, our interesting insights pertain to the effects of delaying the implementation of an ETS 

on the net present value of the plant when there is operating flexibility. First, delaying the ETS 

lowers the utility’s compliance costs over the lifetime of the plant and thus increases the NPV of 

the project. Second, allowing for operating flexibility increases the NPV of the plant. The longer 

the time in which operating flexibility is valid (i.e., the shorter the delay of the ETS), the more 

valuable is operating flexibility. As expected, we find that for sufficiently high carbon price drift 

rate, delaying the ETS always improves the NPV. For sufficiently low carbon price drift rate 

however, this relationship is U-shaped: When the delay time is short, the value of the operating 

flexibility is high and outweighs the compliance cost effect (i.e., the NPV declines when the ETS 

is delayed). For longer delay times, we observe the reverse. While investors typically prefer 
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regulations such as an ETS to be introduced later rather than sooner, our findings suggest that such 

a delay may not be in their best interest when CO2 certificate prices are low. In practice, CO2 

certificate prices in China (and elsewhere) are likely to be moderate, at least initially, reflecting 

rather modest greenhouse gas emission targets. 

The CCS operating flexibility also means that direct support for investments in CCS plants or for 

CCS retrofitting does not necessarily result in lower CO2 emissions. If the future CO2 certificate 

prices are too low, the utility may be better off purchasing allowances rather than operating in 

CCS mode and thereby incurring a loss in production efficiency. In this case, subsidizing a CCS 

retrofit may not necessarily lower a plant’s emissions unless accompanied by additional measures 

to ensure a high expected carbon price. Such mechanisms include floor prices, as currently 

implemented for auctions in the regional ETS in California, Quebec, or the Regional Greenhouse 

Gas Initiative (RGGI), or a market stability reserve mechanism which will be implemented in the 

EU ETS from 2019 on. 

In addition to CO2 certificate prices, other factors influence investments in CCS, CCS retrofits, 

and the operation of a CCS plant, and, thus, also influence the effect of delays in implementing an 

ETS. For example, the costs of CCS retrofits may decline over time because of learning effects. In 

this case, delaying an ETS would not necessarily lower CCS investments. Likewise, if fuel prices 

increase significantly, the costs of operating the plant in CCS mode increase, resulting in lower 

CCS investment and less CCS mode operation. Similarly, introducing an ETS may also affect the 

electricity and coal markets, which, in turn, may influence the investment and operating decisions 

of CCS plants. While considering these indirect effects may be called for in a longer-term analysis, 

they are omitted from our analysis because they are likely to be negligible in the short-to-medium 

term. First, since the electricity market in China is still regulated, higher carbon costs do not 

necessarily lead to a corresponding increase in electricity prices. Second, the carbon price in 

China’s current pilot systems is relatively low, and will probably not be high in the short-to- 

medium term in a future national system, since the size of the emission budget is likely to reflect 

China’s prioritization of economic growth. Finally, in our analysis, the carbon price evolution was 

assumed to be exogenously stochastic, and we neglected the effect of introducing CO2 emission 

regulation on the overall future carbon price evolution. However, the future carbon price may 

depend on the timing of previous policy decisions. In this case, delaying the implementation of an 

ETS would lead to higher carbon prices in the future so that a given future climate target may be 

met. Further research could analyze the impact of endogenous carbon prices on investment in 

power plant CCS retrofits, and CCS plant operation. 

Finally, although this paper is motivated by the actual policy environment in China and the 

simulations are based on parameter values for a supercritical pulverized coal power plant in China, 

the findings may easily be transferred to investment in CCS plants in other countries where the 

timing of the introduction of ETS is uncertain. 
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Appendix A: Calculation of cash flow and CO2 abatement  

The cash flow in each period CF  can be expressed as  

2e fuel om TS COCF R C C C C= − − − −                                            (A.1) 

where eR  is the revenues from the electricity sales, fuelC  is the fuel cost, omC  stands for the 

costs of operation and maintenance (O&M), TSC  reflects the costs for transportation and 

sequestration of CO2, and 
2COC  is the costs for acquiring CO2 certificates. We assume that no 

certificates are allocated for free. In addition, the utility takes prices in all input and output 

markets as given. 

Before the ETS is introduced (BETS), TSC  = 
2COC  = 0, and 

BETS BETS BETS BETS
i e i fuel i om iCF R C C− − −= − − .                                             (A.2) 

After the ETS is introduced and before the plant is retrofitted with CCS (BR), 
2COC  > 0, and 

2

BR BR BR BR BR
i e i fuel i om i CO iCF R C C C− − − −= − − − .                                         (A.3) 

After the ETS is introduced and the plant is retrofitted with CCS, operating the plant in CCS mode 

(CC) means lower revenues from electricity sale, higher costs for O&M, and additional costs for 

transportation and sequestration but lower costs for acquiring certificates. In this case, 

2

CC CC CC CC CC CC
i e i fuel i om i TS i CO iCF R C C C C− − − − −= − − − − .                                   (A.4) 

If the utility suspends CCS (SCC), costs for O&M are lower and TSC  = 0, but certificate costs 

are higher. Therefore,  

2

SCC SCC SCC SCC SCC
i e i fuel i om i CO iCF R C C C− − − −= − − − .                                        (A.5)  

The utility can sell the same amount of electricity NCCS
eN  in non-CCS mode as before the CCS 

retrofit, such that its revenues are 

BETS BR SCC NCCS
e i e i e i e i e iR R R N P− − − − −= = = × ,                                           (A.6)   

where e iP −  is the electricity price in period i. Operating in CCS mode leads to lower electricity 

generation than NCCS
eN , so revenue is 

CC CCS
e i e i e iR N P− − −= × .                                                          (A.7) 
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In each scenario, the fuel input (coal consumption) is the same, coN . Thus, fuel costs are 

BETS BR SCC CC
fuel i fuel i fuel i fuel i co i co iC C C C N P− − − − − −= = = = × ,                                 (A.8)   

where co iP −  is the price of coal in period i. The CO2 emissions are 
2

NCCS
CON  before a CCS 

retrofit and also after a CCS retrofit under non-CCS operation mode. The costs of acquiring 

certificates are then 

2 2 2 2

BR SCC NCCS
CO i CO i CO i CO iC C N P− − − −= = × ,                                              (A.9) 

where 
2CO iP −  is the carbon price in period i.  

In CCS operation mode, the CO2 emission 
2

CCS
CON  < 

2

NCCS
CON , and 

2 2 2

CC CCS
CO i CO i CO iC N P− − −= × .                                                    (A.10)           

Note that 
2

CCS
CON  > 0, reflecting a capture rate of less than 100%. The amount of CO2 abated 

under CCS mode, CAAN , is then 

2 2

SCC CC
CAA CO CON N N= − .                                                       (A.11) 

In CCS mode, the costs for CO2 transportation and sequestration are 

CC CC
TS TS CAAC c N= × ,                                                         (A.12) 

where CC
TSc  is the per unit costs of CO2 transportation and sequestration. 

Before the plant is retrofitted with CCS, CO2 abatement is 0; after the plant is retrofitted, it is 

CAAN  in CCS operation mode and 0 in non-CCS operation mode. Thus, the CO2 abatement 

amount in period i, i
CN , can be described by 

00,                                      

0,      

,

r

i SCC CC
C i i

rSCC CC
CAA i i

when T i T

N if CF CF
when T i T

N if CF CF

≤ ≤ 
 

= ≥  < ≤ <  .                                 

(A.13)

                                    

The total amount of CO2 abated during the lifetime of the plant is 

0

T
t

C
i T

N N
=

=∑
.                                                              

 (A.14) 
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Appendix B: Modeling price uncertainty  

The evolution of prices can be described as follows: 

i t i i t i i t i tdP P dt P dWα σ− − − −= + ,                                                 (B.1)  

where 1,2,3i = , and 1 tP− , 2 tP − , and 3 tP −  represent the coal price, electricity price, and 

carbon price, respectively; iα  stands for the price drift rate; iσ  is the instantaneous price 

volatility; and i tdW −  is the increment to a standard Wiener process, assumed to be normally 

distributed with zero mean and variance dt . Because the utility is assumed to be risk neutral, the 

risk-adjusted form of the process is: 

( )i t i i i t i i t i tdP P dt P dWα λ σ− − − −= − + ,                                           (B.2)                                 

where iλ  is the risk premium, and ( )i iα λ−  is the risk-adjusted drift rate. 

Let ln( )i t i tX P− −= ; applying Ito’s lemma yields, 

21( )2i t i i i i i tdX dt dWα σ λ σ− −= − − + .                                         (B.3) 

In the simulations in Section 4, we used the discrete approximation: 
12 2

( 1)
1exp[( ) ( ) ]2i t i t i i i i tP P t tα σ λ σ ε− + −= − − ∆ + ∆ .                             (B.4) 

To allow for correlations of the evolution of the electricity price, the coal price, and the carbon 

price, we added the following conditions (see Dixit and Pindyck, 1994): 

1 2 1 2

1 3 1 3

2 3 2 3

,

,

.

t t

t t

t t

dW dW dt

dW dW dt

dW dW dt

ρ
ρ
ρ

− − −

− − −

− − −

=
 =
 =

,                                                      (B.5) 

where 1 2ρ − , 1 3ρ − , and 2 3ρ −  are the coefficients of correlation, which reflect the extent to 

which both series move together beyond their trends. 
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Appendix C: Model solution  

We employed a least squares Monte Carlo simulation method to improve the accuracy of the 

estimation of 1( )t tE V , 2( )t tE V , 3( )t tE V , and ( )t tE NPV . To begin, we regressed the 

economic values ( 1 2 3, ,t t tV V V  and tNPV ) on a linear combination of a set of basic functions of 

stochastic variables (electricity price el tP − , coal price co tP − , and carbon price ca tP − ):  

2 2 2

2 2 2
4 4 4 4 4 4 4

4

       + , ( 1,2,3);

             

i
t i i co t i el t i ca t i co t i el t i ca t

i co t el t i co t ca t i ca t el t i t

t co t el t ca t co t el t ca t

co

V a b P c P d P e P f P g P

h P P k P P l P P i

NPV a b P c P d P e P f P g P

h P

ε
− − − − − −

− − − − − − −

− − − − − −

= + + + + + +
+ + + =

= + + + + + +
+

g g g

4 4 4+t el t co t ca t ca t el t tP k P P l P P ε− − − − − − −






 + + g g g

.                (C.1) 

Relying on the estimated regression parameters (, , , , , , , , , ; 1,2,3,4.i i i i i i i i i ia b c d e f g h k l i = ) and 

the simulated stochastic variables, we calculated the estimator for the expected economic value 

[ 1( )t tE V , 2( )t tE V , 3( )t tE V , and ( )t tE NPV ]: 

2 2 2

2 2 2
4 4 4 4 4 4 4

( )

             , ( 1,2,3);

( )

          

i
t t i i co t i el t i ca t i co t i el t i ca t

i co t el t i co t ca t i ca t el t

t t co t el t ca t co t el t ca t

E V a b P c P d P e P f P g P

h P P k P P l P P i

E NPV a b P c P d P e P f P g P

− − − − − −

− − − − − −

− − − − − −

= + + + + + +
+ + + =

= + + + + + +

g g g

4 4 4        co t el t co t ca t ca t el th P P k P P l P P− − − − − −






 + + + g g g

.             (C.2) 

To check robustness of the results, we also included the higher orders of the stochastic variables. 

Doing so significantly increased processing time, but the results hardly changed. 

 


